Effect of supercritical fluid density on nanoencapsulated drug particle size using the supercritical antisolvent method
نویسندگان
چکیده
The reported work demonstrates and discusses the effect of supercritical fluid density (pressure and temperature of supercritical fluid carbon dioxide) on particle size and distribution using the supercritical antisolvent (SAS) method in the purpose of drug encapsulation. In this study, paracetamol was encapsulated inside L-polylactic acid, a semicrystalline polymer, with different process parameters, including pressure and temperature, using the SAS process. The morphology and particle size of the prepared nanoparticles were determined by scanning electron microscopy and transmission electron microscopy. The results revealed that increasing temperature enhanced mean particle size due to the plasticizing effect. Furthermore, increasing pressure enhanced molecular interaction and solubility; thus, particle size was reduced. Transmission electron microscopy images defined the internal structure of nanoparticles. Thermal characteristics of nanoparticles were also investigated via differential scanning calorimetry. Furthermore, X-ray diffraction pattern revealed the changes in crystallinity structure during the SAS process. In vitro drug release analysis determined the sustained release of paracetamol in over 4 weeks.
منابع مشابه
Optimizing supercritical antisolvent process parameters to minimize the particle size of paracetamol nanoencapsulated in L-polylactide
BACKGROUND The aim of this study was to optimize the different process parameters including pressure, temperature, and polymer concentration, to produce fine small spherical particles with a narrow particle size distribution using a supercritical antisolvent method for drug encapsulation. The interaction between different process parameters was also investigated. METHODS AND RESULTS The optim...
متن کاملPreparation of basil seed mucilage aerogels loaded with paclitaxel nanoparticles by the combination of phase inversion technique and gas antisolvent process
Objective(S): In this work, paclitaxel (PX), a promising anticancer drug, was loaded in the basil seed mucilage (BSM) aerogels by implementation of supercritical carbon dioxide (SC-CO2) technology. Then, the effects of operating conditions were studied on the PX mean particle size (MPS), particle size distribution (PSD) and drug loading efficiency (DLE). <stron...
متن کاملApplication of supercritical antisolvent method in drug encapsulation: a review
The review focuses on the application of supercritical fluids as antisolvents in the pharmaceutical field and demonstrates the supercritical antisolvent method in the use of drug encapsulation. The main factors for choosing the solvent and biodegradable polymer to produce fine particles to ensure effective drug delivery are emphasized and the effect of polymer structure on drug encapsulation is...
متن کاملPreparation and Physicochemical Properties of Vinblastine Microparticles by Supercritical Antisolvent Process
The objective of the study was to prepare vinblastine microparticles by supercritical antisolvent process using N-methyl-2-pyrrolidone as solvent and carbon dioxide as antisolvent and evaluate its physicochemical properties. The effects of four process variables, pressure, temperature, drug concentration and drug solution flow rate, on drug particle formation during the supercritical antisolven...
متن کاملProduction of Drug Nanoparticles of Controllable Size Using Supercritical Fluid Antisolvent Technique with Enhanced Mass Transfer
The use of supercritical fluids in the area of material processing and for particle formation has been known for several years now. The advantages of supercritical fluid processing include mild operating temperatures, production of solvent free particles and easy micro encapsulation of particles. One of the attractive methods of particle processing using supercritical fluid is the Supercritical...
متن کامل